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I. Phys. A Mafh. Gen. 27 (1994) 3293-3298. Printed in the UK 

When can an A-particle fermion wavefunction be written as a 
Slater determinant? 

S Romboutst and K Heyde 
Laboratory for Theoretical Physics, Vakgroep Subatomaire en Stralingsfysicq 
Prueftuinsmat 86, B-9000 Gent, Belgium 

Received 28 January 1994 

Abstract. A simple necessary and sufficient condition which tells when an A-particle fermion 
wavefunction CM be written as a Slater determinant is proven. 

1. Introduction 

In calculations of fermion many-body wavefunctions, it is often assumed that the A-particle 
wavefunction @ ( X I ,  . . . , XA) is an antisymmetrized product of A one-particle wavefunctions 
$1, . . . , + A .  This is generally expressed by writing @(xl,. . . , X A )  as a Slater determinant, 
i.e. 

By X I ,  X Z ,  . . . , we mean generalized coordinates, which can contain three-dimensional 
space coordinates, spin coordinates, etc. For some particular A-particle wavefunctions, 
equation (1) can be an exact relation. However, in most cases it will be an approximation 
which implies the loss of correlations between the particles 111. One can derive a necessary 
and sufficient condition for @ which tells when relation (1) will be exact or not. In the 
literature, one finds the condition [2] 

P z = P  (2) 

P ( X , X ' )  := W b + ( X ' ) U ( X ) I ~ ) .  (3) 

where p is the oneparticle density matrix of the A-particle system 

In section 2, we derive an equivalent but purely algebraic condition which immediately 
gives a set of A one-particle wavefunctions @ I , .  . . , @A. In section 3, we simplify this 
condition to an expression with a limited number of terms, independent of the number of 
particles A. To show the equivalence between this condition and the condition of section 2, 
we derive a third equivalent algebraic condition. In section 4, we show the equivalence 
between the algebraic conditions of section 3 and (2). 
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2. An algebraic condition 

Suppose that @ can be written as a Slater determinant of A one-particle functions 41, . . . . @A 

such that (1) holds. If we define Mij as the minor of the element $j(xj )  of the determinant 
in expression (1) and develop this determinant to the j th column we get 

S Rombouts and K Heyde 

We can replace xj by another value, say y j .  and use expression (4) with i, j varying from 
1 to A to get 

(5) 

The notation rl ,(X(xj+yj))  stands for @(XI,. . . , y-I, y j ,  xi+,. . . . , X A ) .  Taking the 
determinant of both sides we get the condition 

(rl,(xi,...,~~))~-’rl,(yi,...,y~) =det ) . (6) 

We made use of the fact that 

rl,(X,,,+Y,,) ’.’ @(X,x,-y, ,)  

rl,(X,+,,,) .” @(X,,i+,,,) 

@ I h )  ”’ @ I ( : ) )  (@l(Xl)  ’ ”  @ I ( x A )  -1 (11’ ” ’  ”’)=clet( ; j ) . (7) 
M I A  ... MAA @ A h )  “. 4 A ( x A )  @A(xl) ’ ’ _  @A(xA)  

As such, equation (6) is a necessary condition for an A-particle wavefunction to be a Slater 
determinant. It must hold for all values of the coordinates XI, 1 . . . , X A ,  y ~ ,  . . . , YA.  It is 
also a sufficient condition if we consider XI, . . . , X A  as constants, then equation (6) gives 
the Slater determinant expression of @(yl, . . . , YA). Apart from the normalization, the 
one-particle wavefunctions are given by 

@i : @i(Y) = @(X(.r,+y)) VY. (8) 

To get an orthonormal set of one-particle wavefunctions, one can apply a GramSchmidt  
orthogonalization procedure, which does not affect the determinant, and multiply each row 
with a suitable normalization factor. If rl, is correctly normalized, the product of all the 
nordization factors will cancel with the factor ( @ ( X I ,  . . . , x A ) ) ~ - - ~  . 
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for all values of y ~ ,  . . . , y4, x ) .  . . . , X A .  This expression can be written in the more compact 
form 

(10) 

where &lrlmn is the fully antisymmetric tensor in the indices k, 1. m, n. Equation (9) can be 
generalized to 

&klmn@(Yk, YI, x33 . . . I xA)@(ym, yns x3, . . . I xA) = 0 
k,I,m.n=l -4 

This expression is fully equivalent to equation (9). 

Proof. Equation (9) can easily be derived from equation (1 1) by replacing (n.. . . , YA) 
by ( x 3 ,  . . . , X A ) .  On the other hand, we can prove equation (11) by induction, starting 
from equation (9). Let N be the number of y-coordinates that differ from any of the x -  
coordinates. In the case N = 0, expression (11) is trivial since the antisymmetry of the 
fermion wavefunction @ implies that @(X(x,,,)) = 0 for i # j .  Suppose that equation (1 1) 
holds for N = n-1. Now we consider the case where N = n .  Without loss of generality, we 
can take (yn+l, . . . , YA) = &+I, . . . , XA). To clarify the following reasoning, we introduce 
the notation 

X(Y>x) = @ ( Y I . . . . , Y ~ - Z , Y . x , x n t l ,  ...,xA). (12) 

Now we can work out the following product explicitly: 

@(XI , .  ..gxA)!b(yl, ..., Y n , x n + l , .  . . , *A)@(YI, . . . ( % I >  x n , .  . ., x A )  

= @ ( X I , .  . . XA)X(Yn-I, Yn)x(Yn-ls xn) 
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We were allowed to apply equation (11) to (16), since the arguments of the two 
wavefunctions contained only n - 1 different coordinates. Substituting (17) into (15) gives 

@ ( x l ,  . . . ,xA)X(yn-l, yn)x(yn-I .xn)  

If @ ( X I ,  ... ,x. ,  ye+,. ..., Y A )  $: 0 , ~  we can suppose without loss of generality that 
equation (18) can be reduced to 

@(XI, .  . . , x A ) $ ( Y l . .  . . Y  Y n T x n + l , .  . . . x A )  
n 

= ~ @ ( x (  ~ ~ + y ~ -  ~ ) ) @ ( Y l ,  ..., y ~ - Z ~ x i ~ Y ~ , x " + l , . ~ ~ , ~ A ) .  (19) 
i=l 

This is equation (11) for N = n. By induction, we obtain that equation (11) holds for 
N = 0.1,. . . , A.  This proves the equivalence between equation (11) and equation (9). 0 

We have shown that (6) leads to (9) and that (9) is equivalent to (11). To establish the 
equivalence between (6) and (9), it is sufficient to show that (1 1) leads to (6). This will be 
proved in the following paragraph. 

Proof. First, we introduce the notation 

@ ( X ( x , - y , , )  " ' @ ( X ( Z , + , , )  

~ ( X ( X A + , , , )  ..' w % h + y A , )  

D ( X ;  y 1 , .  . . , Y A )  := det ( :  ) . (20) 

With this notation, equation (6) can be written as 

( @ ( X I ,  ..., x A ) ) A - ' @ . ( y l ,  . . . , Y A ) = D ( X ; Y I ,  . . . g y A ) .  (21) 

Let N again denote the number of y-coordinates that differ from any of the x -  
coordinates. Since @(X<xt+xj))  = 0 for i f j ,  it is easy to see that D(X X I , .  . . , X A )  = 
(@(xj,  ..., X A ) ) ~ .  Suppose that 
equation (21) holds for N = n - 1. Now we consider the case where N = n. 
Without loss of generality, we can take (yn+l , .  . . , Y A )  = (x.+l.. . . , x A ) .  Expanding 
D ( X ;  y1. . . . , ~ " - 1 ,  y .  x,+I,. . . , xA)  to the nth column gives 

In other words, equation (21) holds for N = 0. 

where mi, stands for the minor of the element on the ith row in the nth column in the 
determinant of (20). For y = x j ,  j < n, we get 

D ( x  Y I .  ...> y n - l . x j , x n + l ,  ... , x A )  = @(XI, . . . , x A ) m j n .  (23) 

In this case N = n - 1, so equation (21) holds. Combining (23) and (21) we obtain, if 
@ ( X I ,  ... , x A )  #os 

mj. =(@(xi,. . . , x A ) ) ~ - * I H Y ~ ,  . . . . ~ , ~ , x j , x , + i , .  . . , x a ) .  (24) 
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Inserting this expression for mj, in (22) gives 

D(x; YI,. , . 9 Yn-1, YvXn+l, . . ., X A )  

n 

= ($(XI, . . . , XA))~- '  $ ( X , x / + y , ) $ ( j ~ ,  . . . , yn-i, xi, xn+ir . . . . X A ) .  (25) 
i=l 

Applying equation (1 1) results in 

~ ( x y l ,  . . . , y ~ - l ~ y ~ X " + l ~ . . . ~ ~ A )  

= ($.(XI. ..., XA))A-'@(Ylr ..., Yn-l,Y,Xn+l, ..., XA). (26) 

This is expression (6) for N = n. By induction, we obtain that expression (6) must hold 

This proves the equivalence between the expressions (6), (9) and (1 1). Note that the 
U 

f o r N = O , l , _ . . ,  A.  

number of terms in expression (9) is independent of the number of particles A.  

4. Idempotence of the one-particle density matrix 

It is known that (2) is a necessary and sufficient condition which tells whether @ can be 
written as a Slater determinant 121. So (2) has to be equivalent with the conditions derived 
in the previous sections. Indeed, equation (2) can easily be derived from equation (11). 

x @ (Yo;-z, 1) @ (X(z ,  + y , ) )  dyl ' ' . dYa dnz . . . &A. (28) 

The integration symbol stands for integrating over all the continuous components and 
for summing over all the discrete components of the coordinates. We assume that @ is 
normalized according to (@I@) = A. Rearranging the variables in the ith term of the 
summation 

(29) y, := yi, yi := yi-1, . . . , yz := y1 

and dividing both sides of (28) by A leads to 
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This precisely matches the firstquantization expression for the oneparticle density matrix 
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p(xt, xi) = p@i, y)p(y, x;)dy (31) s 
or 

pZ=p. (32) 

We do not know a direct way to extract (6), (9) or (11) from equation (32). 

5. Conclusions 

An A-particle fermion wavefunction can be written as a Slater determinant if, and only if, 
one (and consequently all) of the following conditions is (are) fullfilled 

@(X(.r,+Y,,) " ' @(X(X,,+,,) 

l " ( x , + Y , , )  "' W L " + Y " ) )  
( @ I ( x I , . . . , x A ) ) ~ - ' ~ . ( Y I , . . . , Y A )  =dft ( :  ) (33) 

for all values of the coordinates XI , .  . . , X A .  yt ,  . . . , YA; or 

@b'l ,  yZ7X3. .  .. ,xA)@(Y3. Y 4 r X 3 9 . .  .,,xA) + q(Y2, Y 3 . 5 3 7 . .  ., xA)@(Yl, Y4,x3, t , .  3 X A )  

+@(Y~,YI.X~,...,XA)@(YZIY~,X~,...~XA)=O (34) 

for all values of the coordinates x3, . . . , XA,  yl, . . . , y4; or 

A 

@(Yl, . . .?yA)@(xl , - . . ,xA)  ' c@r(y~y~-x j ) )@cI (x (~ j - y~) )  (35) 
kl 

for all values of the coordinates X I ,  . . . , X A ,  y1, . . . , YA and for j = 1, . . . , A; or if 

pz = p. (36) 

The question can be raised whether similar conditions apply to boson many-particle 
wavefunctions. 
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